AB/BC Calculus Exam – Review Sheet – Solutions

A. Precalculus Type problems

	When you see the words	This is what you think of doing
A1	Find the zeros of $f(x)$.	Set function equal to 0. Factor or use quadratic equation if
		quadratic. Graph to find zeros on calculator.
A2	Find the intersection of	Set the two functions equal to each other. Find intersection on
	f(x) and $g(x)$.	calculator.
A3	Show that $f(x)$ is even.	Show that $f(-x) = f(x)$. This shows that the graph of <i>f</i> is
		symmetric to the <i>y</i> -axis.
A4	Show that $f(x)$ is odd.	Show that $f(-x) = -f(x)$. This shows that the graph of <i>f</i> is
		symmetric to the origin.
A5	Find domain of $f(x)$.	Assume domain is $(-\infty,\infty)$. Restrict domains: denominators \neq
		0, square roots of only non-negative numbers, logarithm or
		natural log of only positive numbers.
A6	Find vertical asymptotes of $f(x)$.	Express $f(x)$ as a fraction, express numerator and denominator
		in factored form, and do any cancellations. Set denominator
		equal to 0.
A7	If continuous function $f(x)$ has	This is the Intermediate Value Theorem.
	f(a) < k and $f(b) > k$, explain why	
	there must be a value c such that	
	a < c < b and $f(c) = k$.	

B. Limit Problems

	When you see the words	This is what you think of doing
B1	Find $\lim f(x)$.	Step 1: Find $f(a)$. If you get a zero in the denominator,
	$x \rightarrow a$	Step 2: Factor numerator and denominator of $f(x)$. Do any
		cancellations and go back to Step 1. If you still get a
		zero in the denominator, the answer is either ∞ , $-\infty$,
		or does not exist. Check the signs of
		$\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ for equality.
B2	Find $\lim_{x \to a} f(x)$ where $f(x)$ is a	Determine if $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} f(x)$ by plugging in <i>a</i> to
	piecewise function.	f(x), x < a and $f(x), x > a$ for equality. If they are not equal, the
		limit doesn't exist.
B3	Show that $f(x)$ is continuous.	Show that 1) $\lim_{x \to a} f(x)$ exists
		2) $f(a)$ exists
		3) $\lim_{x \to a} f(x) = f(a)$
B4	Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$.	Express $f(x)$ as a fraction. Determine location of the highest
		power:
		Denominator: $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$
		Both Num and Denom: ratio of the highest power coefficients
		Numerator: $\lim_{x \to \infty} f(x) = \pm \infty$ (plug in large number)
B5	Find horizontal asymptotes of $f(x)$.	$\lim_{x \to \infty} f(x) \text{ and } \lim_{x \to \infty} f(x)$

	When you see the words	This is what you think of doing
B6	f(x)	Use L'Hopital's Rule:
BC	$\lim_{x \to 0} \frac{1}{g(x)}$	
	Find $\mathcal{S}(\mathcal{X})$	f(x) = f'(x)
	if $\lim_{x \to 0} f(x) = 0$ and $\lim_{x \to 0} g(x) = 0$	$\lim_{x \to 0} \frac{g(x)}{g(x)} = \lim_{x \to 0} \frac{g(x)}{g'(x)}$
B7	Find $\lim f(x) \cdot g(x) = 0(\pm \infty)$	Even $(x) = \frac{1}{2}$ and even (x) is the itely of (x)
BC	$x \rightarrow 0^{-1}$	Express $g(x) = \frac{1}{\frac{1}{g(x)}}$ and apply L Hopital's rule.
B8	Find $\lim_{x \to \infty} f(x) - g(x) = \infty - \infty$	Express $f(x) - g(x)$ with a common denominator and use
BC	$x \rightarrow 0$	L'Hopital's rule.
B9	Find $\lim_{x \to 0} f(x)^{g(x)} = 1^{\infty}$ or 0^{0} or ∞^{0}	Take the natural log of the expression and apply L'Hopital's
BC	$x \rightarrow 0$	rule, remembering to take the resulting answer and raise e to
		that power.

C. Derivatives, differentiability, and tangent lines

	When you see the words	This is what you think of doing
C1	Find the derivative of a function using the derivative definition.	Find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{or} \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$
C2	Find the average rate of change of f on $[a, b]$.	Find $\frac{f(b) - f(a)}{b - a}$
C3	Find the instantaneous rate of change of f at $x = a$.	Find $f'(a)$
C4	Given a chart of x and $f(x)$ and selected values of x between a and b, approximate $f'(c)$ where c is a value between a and b.	Straddle <i>c</i> , using a value of $k \ge c$ and a value of $h \le c$. $f'(c) \approx \frac{f(k) - f(h)}{k - h}$
C5	Find the equation of the tangent line to f at (x_1, y_1) .	Find slope $m = f'(x_i)$. Then use point slope equation: $y - y_1 = m(x - x_1)$
C6	Find the equation of the normal line to f at (x_1, y_1) .	Find slope $m \perp = \frac{-1}{f'(x_i)}$. Then use point slope equation: $y - y_1 = m(x - x_1)$
C7	Find <i>x</i> -values of horizontal tangents to <i>f</i> .	Write $f'(x)$ as a fraction. Set numerator of $f'(x) = 0$.
C8	Find <i>x</i> -values of vertical tangents to <i>f</i> .	Write $f'(x)$ as a fraction. Set denominator of $f'(x) = 0$.
C9	Approximate the value of $f(x_1 + a)$ if you know the function goes through point (x_1, y_1) .	Find slope $m = f'(x_i)$. Then use point slope equation: $y - y_1 = m(x - x_1)$. Evaluate this line for y at $x = x_1 + a$. Note: The closer a is to 0, the better the approximation will be. Also note that using concavity, it can be determine if this value is an over or under-approximation for $f(x_1 + a)$.
C10	Find the derivative of $f(g(x))$.	This is the chain rule. You are finding $f'(g(x)) \cdot g'(x)$.
C11	The line $y = mx + b$ is tangent to the graph of $f(x)$ at (x_1, y_1) .	 Two relationships are true: 1) The function <i>f</i> and the line share the same slope at x₁: m = f'(x₁) 2) The function <i>f</i> and the line share the same <i>y</i>-value at x₁.

	When you see the words	This is what you think of doing
C12	Find the derivative of the inverse to	Follow this procedure:
	f(x) at $x = a$.	1) Interchange x and y in $f(x)$.
		 Plug the <i>x</i>-value into this equation and solve for <i>y</i> (you may need a calculator to solve graphically)
		3) Using the equation in 1) find $\frac{dy}{dx}$ implicitly.
		4) Plug the <i>y</i> -value you found in 2) to $\frac{dy}{dx}$
C13	Given a piecewise function, show it	First, be sure that $f(x)$ is continuous at $x = a$. Then take the
	is differentiable at $x = a$ where the	derivative of each piece and show that $\lim f'(x) = \lim f'(x)$.
	function rule splits.	$x \rightarrow a^{-} \qquad x \rightarrow a^{+} \qquad x \rightarrow a^{+}$

D. Applications of Derivatives

	When you see the words	This is what you think of doing
D1	Find critical values of $f(x)$.	Find and express $f'(x)$ as a fraction. Set both numerator
		and denominator equal to zero and solve.
D2	Find the interval(s) where $f(x)$ is	Find critical values of $f'(x)$. Make a sign chart to find sign
	increasing/decreasing.	of $f'(x)$ in the intervals bounded by critical values.
		Positive means increasing, negative means decreasing.
D3	Find points of relative extrema of	Make a sign chart of $f'(x)$. At $x = c$ where the derivative
	f(x).	switches from negative to positive, there is a relative
		minimum. When the derivative switches from positive to
		negative, there is a relative maximum. To actually find the
		point, evaluate $f(c)$. OR if $f'(c) = 0$, then if $f''(c) > 0$,
		there is a relative minimum at $x = c$. If $f''(c) < 0$, there is a
		relative maximum at $x = c$. (2 nd Derivative test).
D4	Find inflection points of $f(x)$.	Find and express $f''(x)$ as a fraction. Set both numerator
		and denominator equal to zero and solve. Make a sign chart
		of $f''(x)$. Inflection points occur when $f''(x)$ witches from
		positive to negative or negative to positive.
D5	Find the absolute maximum or	Use relative extrema techniques to find relative max/mins.
	minimum of $f(x)$ on $[a, b]$.	Evaluate f at these values. Then examine $f(a)$ and $f(b)$.
		The largest of these is the absolute maximum and the
D6	Eindrongo of $f(x)$ on $(-\infty,\infty)$	smallest of these is the absolute minimum
Do	Find range of $f(x)$ on $(-\infty,\infty)$.	Use relative extrema techniques to find relative max/mins. Evaluate f at these values. Then examine $f(a)$ and $f(b)$
		Evaluate f at these values. Then examine $f(u)$ and $f(b)$. Then exemine $\lim_{x \to a} f(x)$ and $\lim_{x \to a} f(x)$
		Then examine $\lim_{x\to\infty} f(x)$ and $\lim_{x\to\infty} f(x)$.
D7	Find range of $f(x)$ on $[a, b]$	Use relative extrema techniques to find relative max/mins.
		Evaluate f at these values. Then examine $f(a)$ and $f(b)$.
		Then examine $f(a)$ and $f(b)$.
D8	Show that Rolle's Theorem holds for	Show that f is continuous and differentiable on $[a, b]$. If
	f(x) on [a, b].	f(a) = f(b), then find some c on $[a, b]$ such that $f'(c) = 0$.

D9	Show that the Mean Value Theorem	Show that f is continuous and differentiable on $[a, b]$. If
	holds for $f(x)$ on $[a, b]$.	f(a) = f(b), then find some c on [a, b] such that
		$f'(c) = \frac{f(b) - f(a)}{b - a}$
D10	Given a graph of $f'(x)$, determine	Make a sign chart of $f'(x)$ and determine the intervals
	intervals where $f(x)$ is	where $f'(x)$ is positive and negative.
	increasing/decreasing.	
D11	Determine whether the linear	Find slope $m = f'(x_i)$. Then use point slope equation:
	approximation for $f(x_1 + a)$ over-	$y - y_1 = m(x - x_1)$. Evaluate this line for y at $x = x_1 + a$.
	estimates or under-estimates $f(x_1 + a)$.	If $f''(x_1) > 0$, f is concave up at x_1 and the linear
		approximation is an underestimation for $f(x_1 + a)$.
		$f''(x_1) < 0$, f is concave down at x_1 and the linear
		approximation is an overestimation for $f(x_1 + a)$.
D12	Find intervals where the slope of $f(x)$	Find the derivative of $f'(x)$ which is $f''(x)$. Find critical
	is increasing.	values of $f''(x)$ and make a sign chart of $f''(x)$ looking for
		positive intervals.
D13	Find the minimum slope of $f(x)$ on	Find the derivative of $f'(x)$ which is $f''(x)$. Find critical
	[a, b].	values of $f''(x)$ and make a sign chart of $f''(x)$. Values of
		x where $f''(x)$ switches from negative to positive are
		potential locations for the minimum slope. Evaluate $f'(x)$
		at those values and also $f'(a)$ and $f'(b)$ and choose the
		least of these values.

E. Integral Calculus

	When you see the words	This is what you think of doing
E1	Approximate $\int_{a}^{b} f(x) dx$ using left	$A = \left(\frac{b-a}{n}\right) \left[f(x_0) + f(x_1) + f(x_2) + \dots + f(x_{n-1})\right]$
	Riemann sums with <i>n</i> rectangles.	
E2	Approximate $\int_{a}^{b} f(x) dx$ using right	$A = \left(\frac{b-a}{n}\right) \left[f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n)\right]$
	Riemann sums with <i>n</i> rectangles.	
E3	Approximate $\int_{a}^{b} f(x) dx$ using midpoint Riemann sums.	Typically done with a table of points. Be sure to use only values that are given. If you are given 7 points, you can only calculate 3 midpoint rectangles.
E4	Approximate $\int_{a}^{b} f(x) dx$ using trapezoidal summation.	$A = \left(\frac{b-a}{2n}\right) \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)\right]$ This formula only works when the base of each trapezoid is
		the same. If not, calculate the areas of individual trapezoids.
E5	Find $\int_{b}^{a} f(x) dx$ where $a < b$.	$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$

	When you see the words	This is what you think of doing
E6	Meaning of $\int_{a}^{x} f(t) dt$.	The accumulation function – accumulated area under function f starting at some constant a and ending at some variable x .
E7	Given $\int_{a}^{b} f(x) dx$, find	$\int_{a}^{b} \left[f(x) + k \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} k dx$
	$\int_{a}^{b} \left[f(x) + k \right] dx.$	
E8	Given the value of $F(a)$ where the antiderivative of f is F , find $F(b)$.	Use the fact that $\int_{a}^{b} f(x) dx = F(b) - F(a)$ so
		$F(b) = F(a) + \int_{a}^{b} f(x) dx$. Use the calculator to find the
		definite integral.
E9	Find $\frac{d}{dx}\int_{a}^{x}f(t) dt$.	$\frac{d}{dx}\int_{a}^{x} f(t) dt = f(x)$. The 2nd Fundamental Theorem.
E10	Find $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$.	$\frac{d}{dx}\int_{a}^{g(x)} f(t) dt = f(g(x)) \cdot g'(x).$ The 2nd Fundamental Theorem.
E11 BC	Find $\int_{0}^{\infty} f(x) dx$.	$\int_{0}^{\infty} f(x) dx = \lim_{h \to \infty} \int_{0}^{h} f(x) dx = \lim_{h \to \infty} F(h) - F(0).$
E12 BC	Find $\int f(x) \cdot g(x) dx$	If <i>u</i> -substitution doesn't work, try integration by parts: $\int u \cdot dv = uv - \int v \cdot du$

F. Applications of Integral Calculus

	When you see the words	This is what you think of doing
F1	Find the area under the curve $f(x)$ on the interval $[a, b]$.	$\int_{a}^{b} f(x) dx$
F2	Find the area between $f(x)$ and $g(x)$.	Find the intersections, <i>a</i> and <i>b</i> of $f(x)$ and $g(x)$. If $f(x) \ge g(x)$ on [a,b], then area $A = \int_{a}^{b} [f(x) - g(x)] dx$.
F3	Find the line $x = c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas.	$\int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx \text{ or } \int_{a}^{b} f(x) dx = 2 \int_{a}^{c} f(x) dx$
F4	Find the volume when the area under $f(x)$ is rotated about the <i>x</i> -axis on the interval [<i>a</i> , <i>b</i>].	Disks: Radius = $f(x)$: $V = \pi \int_{a}^{b} [f(x)]^{2} dx$
F5	Find the volume when the area between $f(x)$ and $g(x)$ is rotated about the x-axis.	Washers: Outside radius = $f(x)$. Inside radius = $g(x)$. Establish the interval where $f(x) \ge g(x)$ and the values of a and b , where $f(x) = g(x)$. $V = \pi \int_{a}^{b} \left(\left[f(x) \right]^{2} - \left[g(x) \right]^{2} \right) dx$

	When you see the words	This is what you think of doing
F6	Given a base bounded by $f(x)$ and $g(x)$ on $[a, b]$ the cross	Base = $f(x) - g(x)$. Area = base ² = $[f(x) - g(x)]^2$.
	sections of the solid perpendicular to the <i>x</i> -axis are squares. Find the volume.	Volume = $\int_{a}^{b} \left[f(x) - g(x) \right]^{2} dx$
F7	Solve the differential equation $dy = f(x) g(x)$	Separate the variables: x on one side, y on the other with the dx and dy in the numerators. Then integrate both sides,
	$\frac{dx}{dx} = f(x)g(y).$	remembering the $+C$, usually on the <i>x</i> -side.
F8	Find the average value of $f(x)$ on $[a, b]$.	$F_{avg} = \frac{\int_{avg}^{b} f(x) dx}{b-a}$
F9	Find the average rate of change of $F'(x)$ on $[t_1,t_2]$.	$\frac{\frac{d}{dt}\int_{t_1}^{t_2} F'(x) dx}{t_2 - t_1} = \frac{F'(t_2) - F'(t_1)}{t_2 - t_1}$
F10	<i>y</i> is increasing proportionally to <i>y</i> .	$\frac{dy}{dt} = ky$ which translates to $y = Ce^{kt}$
F11	Given $\frac{dy}{dx}$, draw a slope field.	Use the given points and plug them into $\frac{dy}{dx}$, drawing little
E12	dr.	lines with the calculated slopes at the point.
BC	Find $\int \frac{dx}{ax^2 + bx + c}$	$\int \frac{dx}{(mx+n)(px+q)}$ and use Heaviside method to create
		partial fractions and integrate each fraction.
F13 BC	Use Euler's method to approximate $f(1.2)$ given a formula for	$dy = \frac{dy}{dx}(\Delta x), \ y_{\text{new}} = y_{\text{old}} + dy$
	$\frac{dy}{dx}$, (x_0, y_0) and $\Delta x = 0.1$	
F14 BC	Is the Euler's approximation an over- or under-approximation?	Look at sign of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in the interval. This gives
		increasing/decreasing and concavity information. Draw a picture to ascertain the answer.
F15 BC	A population <i>P</i> is increasing logistically.	$\frac{dP}{dt} = kP(C - P).$
F16	Find the carrying capacity of a	$\frac{dP}{dP} = kP(C - P) = 0 \implies C = P$
BC	population growing logistically.	$\frac{dt}{dt} = \kappa r \left(C - r \right) = 0 \Rightarrow C = r.$
F17 BC	Find the value of <i>P</i> when a population growing logistically is growing the fastest.	$\frac{dP}{dt} = kP(C - P) \Longrightarrow \text{Set } \frac{d^2P}{dt^2} = 0$
F18 BC	Given continuous $f(x)$, find the arc length on $[a, b]$	$L = \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^2} dx$

G. Particle Motion and Rates of Change

_	When you see the words	This is what you think of doing
G1	Given the position function $s(t)$ of a particle moving along a straight line, find the velocity and acceleration.	v(t) = s'(t) $a(t) = v'(t) = s''(t)$
G2	Given the velocity function $v(t)$ and $s(0)$, find $s(t)$.	$s(t) = \int v(t) dt + C$. Plug in $s(0)$ to find C.
G3	Given the acceleration function $a(t)$ of a particle at rest and $s(0)$, find s(t).	$v(t) = \int a(t) dt + C_1. \text{ Plug in } v(0) = 0 \text{ to find } C_1.$ $s(t) = \int v(t) dt + C_2. \text{ Plug in } s(0) \text{ to find } C_2.$
G4	Given the velocity function $v(t)$, determine if a particle is speeding up or slowing down at t = k.	Find $v(k)$ and $a(k)$. If both have the same sign, the particle is speeding up. If they have different signs, the particle is slowing down.
G5	Given the position function $s(t)$, find the average velocity on $[t_1, t_2]$.	Avg. vel. $= \frac{s(t_2) - s(t_1)}{t_2 - t_1}$
G6	Given the position function $s(t)$, find the instantaneous velocity at t = k.	Inst. vel. = $s'(k)$.
G7	Given the velocity function $v(t)$ on $[t_1,t_2]$, find the minimum acceleration of a particle.	Find $a(t)$ and set $a'(t) = 0$. Set up a sign chart and find critical values. Evaluate the acceleration at critical values and also t_1 and t_2 to find the minimum.
G8	Given the velocity function $v(t)$, find the average velocity on $[t_1, t_2]$.	Avg. vel. = $\frac{\int_{t_1}^{t_2} v(t) dt}{t_2 - t_1}$
G9	Given the velocity function $v(t)$, determine the difference of position of a particle on $[t_1, t_2]$.	Displacement = $\int_{t_1}^{t_2} v(t) dt$
G10	Given the velocity function $v(t)$, determine the distance a particle travels on $[t_1, t_2]$.	Distance = $\int_{t_1}^{t_2} v(t) dt$
G11	Calculate $\int_{t_1}^{t_2} v(t) dt$ without a calculator.	Set $v(t) = 0$ and make a sign charge of $v(t) = 0$ on $[t_1, t_2]$. On intervals $[a, b]$ where $v(t) > 0$, $\int_{a}^{b} v(t) dt = \int_{a}^{b} v(t) dt$ On intervals $[a, b]$ where $v(t) < 0$, $\int_{a}^{b} v(t) dt = \int_{b}^{a} v(t) dt$
G12	Given the velocity function $v(t)$ and $s(0)$, find the greatest distance of the particle from the starting position on $[0,t_1]$.	Generate a sign chart of $v(t)$ to find turning points. $s(t) = \int v(t) dt + C$. Plug in $s(0)$ to find C. Evaluate $s(t)$ at all turning points and find which one gives the maximum distance from $s(0)$.

	When you see the words	This is what you think of doing
G13	The volume of a solid is changing at	$\frac{dV}{dV}$
	the rate of	$\frac{dt}{dt} = \dots$
G14	The mapping of $\int D'(t) dt$	This gives the accumulated change of $R(t)$ on $[a, b]$.
	The meaning of $\int K(t) dt$.	b f = i(x) = (x) = (x) = (x) = (x)
	а	$\int R'(t) dt = R(b) - R(a) \text{ or } R(b) = R(a) + \int R'(t) dt$
G1		a a
GI5	Given a water tank with g gallons $G_{1}(x)$	a) $q + \int_{0}^{m} \left[F(t) - F(t) \right] dt$
	initially, filled at the rate of $F(t)$	a g f f f (t) = L(t) f a t
	gallons/min and emptied at the rate	1 m
	of $E(t)$ gallons/min on $[t_1, t_2]$ a)	b) $\frac{d}{dt} \int \left[F(t) - E(t) \right] dt = F(m) - E(m)$
	The amount of water in the tank at t	$dt \frac{J}{0}$
	= m minutes. b) the rate the water	c) set $F(m) - E(m) = 0$, solve for m, and evaluate
	amount is changing at $t = m$ minutes	m
	and c) the time <i>t</i> when the water in	$g + \int [F(t) - E(t)] dt$ at values of <i>m</i> and also the endpoints.
	the tank is at a minimum or	
	maximum.	

H. Parametric and Polar Equations - BC

When you see the words ...

This is what you think of doing

H1	Given $x = f(t), y = g(t)$, find $\frac{dy}{dx}$.	$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
H2	Given $x = f(t), y = g(t)$, find $\frac{d^2y}{dx^2}$.	$x = f(t), y = g(t), \text{ find } \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$
Н3	Given $x = f(t), y = g(t)$, find arc length on $[t_1, t_2]$.	$L = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
H4	Express a polar equation in the form of $r = f(\theta)$ in parametric form.	$x = r\cos\theta = f(\theta)\cos\theta$ $y = r\sin\theta = f(\theta)\sin\theta$
Н5	Find the slope of the tangent line to $r = f(\theta)$.	$x = r\cos\theta$ $y = r\sin\theta \Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$
H6	Find horizontal tangents to a polar $f(0)$	$x = r\cos\theta y = r\sin\theta$
	curve $r = f(\theta)$.	Find where $r\sin\theta = 0$ when $r\cos\theta \neq 0$
H7	Find vertical tangents to a polar	$x = r\cos\theta y = r\sin\theta$
	curve $r = f(\theta)$.	Find where $r\cos\theta = 0$ when $r\sin\theta \neq 0$
H8	Find the area bounded by the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$.	$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta = \frac{1}{2} \int_{\theta_1}^{\theta_2} \left[f(\theta) \right]^2 d\theta$
H9	Find the arc length of the polar curve $r = f(\theta)$ on $[\theta_1, \theta_2]$.	$s = \int_{\theta_1}^{\theta_2} \sqrt{\left[f(\theta)\right]^2 + \left[f'(\theta)\right]^2} d\theta = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$

I. Vectors and Vector-valued functions - BC

	When you see the words	This is what you think of doing
I1	Find the magnitude of vector	$ v = \sqrt{v_1^2 + v_2^2}$
	$v\langle v_1, v_2 \rangle.$	
I2	Find the dot product: $\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle$	$\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle = u_1 v_1 + u_2 v_2$
I3	The position vector of a particle	
	moving in the plane is	a) $v(t) = \langle x'(t), y'(t) \rangle$
	$r(t) = \langle x(t), y(t) \rangle$. Find a) the	b) $a(t) = \langle x''(t), y''(t) \rangle$
	velocity vector and b) the	
	acceleration vector.	
I4	The position vector of a particle	Speed = $ v(t) = \sqrt{ x'(t) ^2 + v'(t) ^2}$ - a scalar
	moving in the plane is	
	$r(t) = \langle x(t), y(t) \rangle$. Find the speed of	
	the particle at time <i>t</i> .	
15	Given the velocity vector	$s(t) = \int x(t) dt + \int y(t) dt + C$
	$v(t) = \langle x(t), y(t) \rangle$ and position at	Use $s(0)$ to find C, remembering that it is a vector.
	time $t = 0$, find the position vector.	
I6	Given the velocity vector	
	$v(t) = \langle x(t), y(t) \rangle$, when does the	$v(t) = 0 \Rightarrow x(t) = 0$ AND $y(t) = 0$
	particle stop?	
I7	The position vector of a particle	$\mathbf{r} = \frac{t_2}{\mathbf{r}} \left[\mathbf{r} \cdot (\mathbf{r})^2 \mathbf{r} \cdot (\mathbf{r})^2 \right]$
	moving in the plane is	Distance = $\int \sqrt{[x'(t)]} + [y'(t)] dt$
	$r(t) = \langle x(t), y(t) \rangle$. Find the distance	t_1
	the particle travels from t_1 to t_2 .	

J. Taylor Polynomial Approximations - BC

	When you see the words	This is what you think of doing
J1	Find the <i>n</i> th degree Maclaurin polynomial to $f(x)$.	$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{2!}x^2 + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{2!}x^2 + \frac{f''''(0)}{2!}x^2 + \frac{f''''(0)}{2!}x^2 + \frac{f''''(0)}{2!}x^2 + f''''''''''''''''''''''''''''''''''''$
		$\frac{f''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n$
J2	Find the <i>n</i> th degree Taylor polynomial to $f(x)$ centered at	$P_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + $
	x = c.	$\frac{f'''(c)(x-c)^3}{3!} + \dots + \frac{f^{(n)}(c)(x-c)^n}{n!}$
J3	Use the first-degree Taylor	Write the first-degree TP and find $f(k)$. Use the signs of
	polynomial to $f(x)$ centered at	f'(c) and $f''(c)$ to determine increasing/decreasing and
	x = c to approximate $f(k)$ and	concavity and draw your line (1 st degree TP) to determine
	determine whether the	whether the line is under the curve (under-approximation) or
	approximation is greater than or less than $f(k)$.	over the curve (over-approximation).

	When you see the words	This is what you think of doing
J4	Given an <i>n</i> th degree Taylor	f(c) will be the constant term in your Taylor polynomial (TP)
	polynomial for f about $x = c$, find	f'(c) will be the coefficient of the x term in the TP.
	$f(c), f'(c), f''(c), \dots, f^{(n)}(c)$	$\frac{f''(c)}{2!}$ will be the coefficient of the x^2 term in the TP.
		$\frac{f^{(n)}(c)}{n!}$ will be the coefficient of the x^n term in the TP.
J5	Given a Taylor polynomial centered	If there is no first-degree <i>x</i> -term in the TP, then the value of <i>c</i>
	at c, determine if there is enough	about which the function is centered is a critical value. Thus
	information to determine if there is	the coefficient of the x^2 term is the second derivative divided
	a relative maximum or minimum at	by 2! Using the second derivative test, we can tell whether
	x = c.	there is a relative maximum, minimum, or neither at $x = c$.
J6	Given an <i>n</i> th degree Taylor polynomial for f about $x = c$, find the Lagrange error bound	$R_n(x) = \frac{f^{(n+1)}(z)}{(n+1)!} x-c ^{n+1}.$ The value of z is some number
	(remainder).	between x and c. $f^{(n+1)}(z)$ represents the $(n+1)^{st}$ derivative of
		z. This usually is given to you.
J7	Given an <i>n</i> th degree Maclaurin polynomial <i>P</i> for <i>f</i> , find the f(k) - P(k) .	This is looking for the Lagrange error – the difference between the value of the function at $x = k$ and the value of the TP at x = k.

K. Infinite Series - BC

	When you see the words	This is what you think of doing
K1	Given a_n , determine whether the	a_n converges if $\lim a_n$ exists.
	sequence a_n converges.	$n \rightarrow \infty$
K2	Given a_n , determine whether the	If $\lim a_n = 0$, the series could converge. If $\lim a_n \neq 0$, the
	series a_n could converge.	series cannot converge. (<i>n</i> th term test).
K3	Determine whether a series	Examine the <i>n</i> th term of the series. Assuming it passes the <i>n</i> th
	converges.	term test, the most widely used series forms and their rule of
		convergence are:
		Geometric: $\sum_{n=0}^{\infty} ar^n$ - converges if $ r < 1$
		<i>p</i> -series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ - converges if $p > 1$
		Alternating: $\sum_{n=1}^{\infty} (-1)^n a_n$ - converges if $0 < a_{n+1} < a_n$
		Ratio: $\sum_{n=0}^{\infty} a_n$ - converges if $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$
K4	Find the sum of a geometric series.	$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$
K5	Find the interval of convergence of a	If not given, you will have to generate the <i>n</i> th term formula.
	series.	Use a test (usually the ratio test) to find the interval of
		convergence and then check out the endpoints.

	When you see the words	This is what you think of doing
K6	$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$	The harmonic series – divergent.
K7	$f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$	$f(x) = e^x$
K8	$f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$	$f(x) = \sin x$
K9	$f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$	$f(x) = \cos x$
K10	$f(x) = 1 + x + x^{2} + x^{3} + \dots + x^{n} + \dots$	$f(x) = \frac{1}{1-x}$ Convergent : (-1,1)
K11	Given a formula for the <i>n</i> th derivative of $f(x)$. Write the first	$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)(x - c)^{2}}{2!} + f''(c)(x - c)^{$
	four terms and the general term for the power series for $f(x)$ centered at $x = c$.	$\frac{f'''(c)(x-c)^{3}}{3!} + \dots + \frac{f^{(n)}(c)(x-c)^{n}}{n!} + \dots$
K12	Let S_4 be the sum of the first 4 terms of an alternating series for $f(x)$. Approximate $ f(x) - S_4 $.	This is the error for the 4 th term of an alternating series which is simply the 5 th tern. It will be positive since you are looking for an absolute value.
K13	Write a series for expressions like e^{x^2} .	Rather than go through generating a Taylor polynomial, use the fact that if $f(x) = e^x$, then $f(x^2) = e^{x^2}$. So
		$f(x) = e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!} + \dots$ and
		$f(x^{2}) = e^{x^{2}} = 1 + x^{2} + \frac{x^{4}}{2} + \frac{x^{6}}{3!} + \frac{x^{8}}{4!} + \dots + \frac{x^{2n}}{n!} + \dots$