Name:_____

10. $\left(\frac{x^3}{y^4}\right)^{-5}$

Topic A Simplifying Expressions

Simplify.

1.
$$(2x-3)(x+5)$$
 2. $(x^3-1)(x^3+1)$ 3. $(2x+4)^2$

Simplify. Leave no negative exponents in your final answer.

- 4. $(3xy^5)^4$ 7. $3x^{-2}$
- 5. $(7xy^2)^0$ 8. $(3x^{-2})^3$
- 6. x^{-3} 9. $(3x^2)^{-4}$

Simplify by rationalizing the denominator.

11.
$$\frac{8}{\sqrt{3}}$$
 12. $\frac{4x+2}{\sqrt{x-1}}$ 13. $\frac{2}{1-\sqrt{x}}$

Simplify by rewriting with no radical signs.

14. $\sqrt[3]{x^2}$ 15. $\sqrt[5]{x^8}$

Simplify by rewriting with no fractional exponents.

16.
$$x^{\frac{4}{5}}$$
 17. $x^{\frac{4}{9}}$

Topic B Fraction Basics

Simplify.

1.
$$\frac{3x+6}{3}$$
 2. $\frac{6x+3}{3x}$ 3. $\frac{2+\frac{1}{2}}{1+\frac{3}{5}}$ 4. $\frac{\frac{1}{x}+\frac{1}{3}}{1+\frac{1}{6x}}$

Name:_____

Topic C Solving Algebraic Equations

Solve.

1.
$$2x^2 + 5 = 13$$
3. $5x + 5 = 2x - 1$ 5. $5[2 + 3(x+1)] = 4$

2.
$$5x + 2(x + 4) = -6$$

4. $80 = 10(3t + 2)$

Solve the following for r.

6.
$$SA = 4\pi r^2$$
 7. $V = h(\pi - r)^2$

Factor.	Topic D Factoring	
1. $5x^4 - 20x^3$	2. $-2x^3 + 6x^2 - 10x$	3. $x^2 + 8x + 15$
4. $2x^2 + 34x - 220$	5. $12x^2 + 23x + 10$	6. $3x^2 + 10x - 8$
7. $x^2 + 6x + 9$	8. $x^2 - 25$	9. $4x^2 - 16$

Name:_____

Topic E More Fractions

Simplify and reduce.

1.
$$4x + \frac{3x+2}{3}$$
 2. $\frac{4x+2}{3} \cdot \frac{6x}{x+1}$ 3. $\frac{x+1}{x} \div \frac{2x+2}{x}$

4.
$$\frac{x+3}{3x} \div \frac{x-1}{2x}$$
 5. $\frac{3}{x-1} \div \frac{4}{x-2}$ 6. $\frac{2x-1}{x} \div \frac{3x}{x-2}$

Topic F Linear Equations and Systems

1. Determine the equation of a line with a slope of $\frac{-2}{3}$ and a y-intercept of (0, 4).

- 2. Determine the equation of a line with a slope of 2 and passes through the point (1,3).
- 3. Determine the equation of a line that goes through (1, 6) and (-3, 5).
- 4. Determine the equation of a line that goes through (-1, -5) and that is parallel to 3x + y = -4.
- 5. Determine the equation of a line that goes through (1, 1) and that is perpendicular to -2x + y = 6.

Find the slope and y-intercept of each line.

6.
$$\frac{5}{2}x + 1 = y$$

7. $5x + 4y = 4$

Solve the following systems by hand, then check your answer in the calculator by finding the intersection point.

8. x + y = 3 5x - y = -279. 3x + 3y = 152x + 6y = 22

Solve for x without the help of a calculator. 9. $\cos \frac{\pi}{3} = x$ 10. $\sin \frac{7\pi}{6} = x$ 11. $\cos \frac{7\pi}{6} = x$ 12. $\sin \frac{\pi}{3} = x$

13.
$$\sec \frac{5\pi}{3} = x$$
 14. $\tan \frac{5\pi}{4} = x$ 15. $\cot \frac{-\pi}{6} = x$

Graph one cycle of the following equations. 16. $y = 3\sin[\frac{1}{2}(x+\pi)] - 2$

17. $y = \cos(\pi x) + 3$

Name:_

Name:____

Topic H Solving Trig Equations

Solve the following *without* the help of a calculator. Answers should be exact (no decimal approximations, please). Restrict x to: $0 \le x < 2\pi$.

1.
$$\cos x = 0$$

2. $\sin x = \frac{\sqrt{3}}{2}$
3. $\sin x = -1$
4. $\cos x = -1$

5.
$$\tan x = -1$$
 6. $\sin^2 x - \sin x = 0$ 7. $2\cos^2 x - 1 = 0$

Calculator Problem: Solve the following graphically. Give only the two solutions that are *closest* to the origin.

8. $\cos(3x) = \sin(x^3)$ 9. $\sin^2(x+1) = \log(x) \cdot \tan(x)$

Topic I Quadratic Equations

Find the roots by *factoring*. 1. $y = x^2 - 3x - 10$ 2. $y = x^2 - 2x + 1$

Find the roots by using the *quadratic formula*. 3. $y = x^2 + 5x - 1$ 4. $y = -3x^2 + 2x + 10$

Topic J Absolute Value Equations

Solve the following algebraically.		
1. $ 4x + 1 = 20$	2. $ x^2 - 3 = 8$	3. $ -x-4 = 10$

Name:_____

Rewrite the following as piece-wise functions.

4.
$$y = |4x - 5|$$
 5. $y = |8 - 3x|$

Graph the following.

6.
$$y = |x^2 + 2x - 3|$$

7. $y = |\cos(2x)| \text{ on } [0, 2\pi]$
8. $y = |x - 1|$

Topic K Rational Equations

Solve the equation algebraically. Remember to eliminate extraneous solutions.

1.
$$\frac{3x-6}{x+4} = 0$$

2. $\frac{x^2+9x+8}{x+1} = 0$
3. $\frac{2x^3+3x^2}{x^3-4x} = 0$

Topic L Logarithmic and Exponential Equations

Solve the following *without* the help of a calculator.

1. $\log_3 81 = x$ 2. $\log_x 25 = 2$ 3. $\log x = 3$

4. Give the inverse of $y = \log_3 x$.

Rewrite the following strictly in terms of log 3 and/or log 2.

5. $\log 12$ 6. $\log 18$ 7. $\log (0, \overline{6})$

Name:____

Solve the following algebraically. Give an exact answer. Eliminate any extraneous solutions.

8. $e^{3x} = 19$ 9. $\log (3x^2 - 2) = 1$ 10. $5^{(x-2)} = 250$

Topic M Functions and Relations

State the domain of each of the following functions.

1.
$$y = \sqrt{x+2}$$
 2. $y = \sqrt{x^2 + 5x + 6}$ 3. $y = \frac{x^2 + 5}{x^2 + 6x}$

4.
$$\frac{x}{\sqrt{x-1}}$$
 5. $y = \log (3x-6)$ 6. $y = (x+2)(x+5)(x^2-3)$

Topic N Asymptotes and End Behavior

Find the asymptotes (horizontal, vertical, oblique) and any removeable discontinuities of the following functions.

1.
$$y = \frac{x+5}{x^2-3x}$$
 2. $y = \frac{x^2+2x+3}{x+1}$ 3. $y = \frac{2x^2+4x+9}{5x^2+10x}$

4.
$$y = \frac{x^2 + 2x - 3}{x - 1}$$
 5. $y = \frac{x^2 + 4x + 4}{x^2 - 4}$

Name:____

Topic O Inverse Functions

Find the inverse of each function algebraically. Show your work.1. y = 3x + 22. $y = \frac{1}{2}x - 6$ 3. $y = x^2 + 5$ 4. $y = \sin x$

Topic P Inverse Trig Functions

Evaluate. Use restricted domains.

1. $\sin^{-1}\frac{1}{2}$ 2. $\tan^{-1}(-\sqrt{3})$ 3. $\csc^{-1}2$ 4. $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

Topic Q Transformations of Parent Functions Graph the following accurately. At least 3 points must be marked on your graph.

1.
$$y = 2x^2 - 3$$

2. $y = \frac{2}{x - 3}$

3. $y = 2\sqrt[3]{x-1} + 3$

4. $y = -2\ln(x+3)$