1) $\frac{d y}{d x}=5 x^{4}$
$(0,2)$
2) $\frac{d y}{d x}=\frac{2 x}{y}$
$y(1)=-3$
3) $y^{\prime}=9 x^{2} y \quad y(0)=2$
4) $\frac{d y}{d x}=\frac{3 x^{2}}{e^{2 y}} \quad y(0)=0.5$

Verifying Solutions to Differential Equations

5) Determine whether the function is a solution of the differential equation $y^{\prime \prime}-y=0$.
a) $y=\sin (x)$
b) $y=4 e^{-x}$
6) Let f be a function with $f(1)=4$ such that for all points (x, y) on the graph of f the slope is given by $\frac{3 x^{2}+1}{2 y}$.
a) Find the slope of the graph of f at the point where $x=1$.
b) Write an equation for the line tangent to the graph of f at $x=1$ and use it to approximate $f(1.2)$.
c) Find $f(x)$ by solving the separable differential equation $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$ with the initial condition $f(1)=4$.
7) Exponential Growth and Decay

The rate of growth is directly proportional to the population.

$$
\frac{d P}{d t}=k \square P
$$

Example: A puppy weighs 2.0 pounds at birth and 3.5 pounds two months later. If the weight of the puppy during its first 6 months is increasing at a rate proportional to its weight, then how much will the puppy weigh when it is 3 months old?
\qquad

Find the particular equation for each differential equation and initial condition.

1) $\frac{d y}{d x}=y^{2}$
$y(1)=-2$
2) $\frac{d y}{d x}=\frac{x^{3}}{y^{2}}$
$y(1)=2$
3) $\frac{d y}{d x}=\frac{1}{x}$
4) $\frac{d y}{d x}=\frac{1}{3 y^{2}}$
5) $\frac{d y}{d x}=\frac{2 x}{y}$
$(2,4)$
6) $\frac{d y}{d x}=\frac{1+x}{x y} \quad y(1)=-4$
7) $\frac{d y}{d x}=\frac{e^{x}}{y}$
$y(0)=4$
8) $x y \frac{d y}{d x}-\ln x=0$
$y(1)=0$

Verify whether or not the following are solutions to the given differential equations:
9) Differential
$y^{\prime \prime}+y=0$
$y^{\prime \prime}+4 y^{\prime}=2 e^{x}$
10) Given $\frac{d y}{d x}=\frac{-4 x+2}{y}$.
a) Write the equation for the line tangent to the graph at $(2,-4)$ and use it to approximate $f(1.8)$.
b) Find the particular solution $y=f(x)$ to the differential equation with initial condition $f(2)=-4$.
11) Population y grows according to the equation $\frac{d y}{d t}=k y$, where k is a constant and t is measured in years. Find the population in 2013 if the population was 12,000 in 1980 and the population doubles every 10 years.
12) The rate of decomposition of radioactive radium is proportional to the amount present at any time. The half-life of radioactive radium is 1599 years. What percent of a present amount will remain after 25 years?

