Notes: Definite Integrals (FTC Part 1)

b
L f(x)dx is called a definite integral. Its answer will be a numeric value.

We can find the value by taking the antiderivative; we will call this F(x), and
evaluating F(b)-F(a). For these antiderivatives, we do not need “+C"” because they
will just cancel out when we subtract.

Example: Another example:
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Absolute Value: To find the integral of an absolute value function, you must break up
the function into its differentiable intervals.
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Average Value of a Function:

If f is integrable on [a,b], its average (mean) value on [a,b] is

1 b
e L f(x)dx

Explanation:
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¢ is where the average height occurs.



Example: Find the average value of f(x)=3x*-2x over [1,3].
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Mean Value Theorem for Integrals:
If f is continuous on [a,b], then at some point “c” in [a,b]

F@= 5! Fx)ds

This is an existence theorem. It states that there must be a c on the interval such that
f(c) is the average height of the function.

Example:

Using the MVT for integrals, find the value of “c”. f(x)=i2 Sfor [1,4]
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Example: The rate of water flow out of a pipe, in gallons per hour, can be approximated
by Q(r)=;—9(?68+23r—r3). Use Q(t) to approximate the average rate of waterflow out of
the pipe in a 24-hour time period.
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Average Rates of Change Problems Name KE’J-{/

Show all work leading to your answer. There will often be more than one way to solve the problem. You may use a
calculator on * problems.

1. Suppose that the velocity function of a particle moving along a coordinate line is v(1) = 31" +2.

a) Find the average velocity over the time interval 1 <1 <4,
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b) Find the average acceleration over the time interval 1 <7 <4.
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2. Suppose that the acceleration function of a particle moving along a coordinate line is «(/) =+ 1. Find the average

acceleration of the particle over the time interval 0 </ <5.
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*3. During the first 40 seconds of a rocket flight, the rocket is propelled straight up so that in t seconds it reaches of

height of s(f) =

P
feet.
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a) What is the average height of the rocket during the first 40 seconds?
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c) What is the average acceleration of the rocket durmg the first 40 seconds?
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