AP Differential Free Response Packet

1) A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the

figure. Let *h* be the depth of the coffee in the pot, measured in inches, where *h* is a function of time *t*, measured in seconds. The volume *V* of coffee in the pot is changing at the rate of $-5\pi\sqrt{h}$ cubic inches per second. (The volume *V* of a cylinder with radius *r* and height *h* is $V = \pi r^2 h$.)

(a) Show that $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$.

(b) Given that h = 17 at time t = 0, solve the differential equation $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$ for *h* as a function of *t*.

(c) At what time *t* is the coffeepot empty?

2008 AP[®] CALCULUS AB FREE-RESPONSE QUESTIONS

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{y-1}{x^2}$, where $x \neq 0$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.(Note: Use the axes provided in the exam booklet.)

- (b) Find the particular solution y = f(x) to the differential equation with the initial condition f(2) = 0.
- (c) For the particular solution y = f(x) described in part (b), find $\lim_{x \to \infty} f(x)$.

2007 AP[®] CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y 1$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.(Note: Use the axes provided in the exam booklet.)

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up.
- (c) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer.

2011 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

- 5. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.
 - (a) Use the line tangent to the graph of W at t = 0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t = \frac{1}{4}$).
 - (b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or

an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$.

(c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W - 300)$ with initial condition W(0) = 1400.