\qquad

1) A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure. Let h be the depth of the coffee in the pot, measured in inches, where h is a function of time t, measured in seconds. The volume V of coffee in the pot is changing at the rate of $-5 \pi \sqrt{h}$ cubic inches per second. (The volume V of a cylinder with radius r and height h is $V=\pi r^{2} h$.)
(a) Show that $\frac{d h}{d t}=-\frac{\sqrt{h}}{5}$.

(b) Given that $h=17$ at time $t=0$, solve the differential equation $\frac{d h}{d t}=-\frac{\sqrt{h}}{5}$ for h as a function of t.
(c) At what time t is the coffeepot empty?

2008 AP $^{\oplus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

5. Consider the differential equation $\frac{d y}{d x}=\frac{y-1}{x^{2}}$, where $x \neq 0$.
(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.
(Note: Use the axes provided in the exam booklet.)

(b) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(2)=0$.
(c) For the particular solution $y=f(x)$ described in part (b), find $\lim _{x \rightarrow \infty} f(x)$.

2007 AP $^{\bullet}$ CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

5. Consider the differential equation $\frac{d y}{d x}=\frac{1}{2} x+y-1$.
(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.
(Note: Use the axes provided in the exam booklet.)

(b) Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Describe the region in the $x y$-plane in which all solution curves to the differential equation are concave up.
(c) Let $y=f(x)$ be a particular solution to the differential equation with the initial condition $f(0)=1$. Does f have a relative minimum, a relative maximum, or neither at $x=0$? Justify your answer.

2011 AP ${ }^{\oplus}$ CALCULUS AB FREE-RESPONSE QUESTIONS

5. At the beginning of 2010 , a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.
(a) Use the line tangent to the graph of W at $t=0$ to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t=\frac{1}{4}$).
(b) Find $\frac{d^{2} W}{d t^{2}}$ in terms of W. Use $\frac{d^{2} W}{d t^{2}}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t=\frac{1}{4}$.
(c) Find the particular solution $W=W(t)$ to the differential equation $\frac{d W}{d t}=\frac{1}{25}(W-300)$ with initial condition $W(0)=1400$.
