\qquad

What are the critical points for $f(x)$? a, c, d, f, h
Critical number are any x values where $f^{\prime}(x)=0$ or is undefined.
Where is $f(x)$ increasing? $(-\infty, a) U(c, d) U(f, h) U(h, \infty)$
$f(x)$ is increasing at any x values where $f^{\prime}(x)>0$.
Where is $f(x)$ decreasing? $(a, c) U(d, f)$
$f(x)$ is decreasing at any x values where $f^{\prime}(x)<0$
Identify the location of any relative maxima for $f(x)$. at $x=a$ and d
$f^{\prime}(x)$ changes from positive to negative at these points.
Identify the location of any relative minima for $\mathrm{f}(\mathrm{x})$. at $\mathrm{x}=\mathrm{c}$ and f
$f^{\prime}(x)$ changes from negative to positive at these points.
Where is $\mathrm{f}(\mathrm{x})$ concave up? $(\mathrm{b}, \mathrm{O}) \mathrm{U}(\mathrm{e}, \mathrm{g}) \mathrm{U}(\mathrm{h}, \infty)$
$f^{\prime}(x)$ is increasing on these intervals.
Where is $f(x)$ concave down? $(-\infty, b) \cup(0, e) \cup(g, h)$
$f^{\prime}(x)$ is decreasing on these intervals.
Identify the location of any points of inflection for $f(x)$. at $x=b, 0, e, g$, and h
$f^{\prime}(x)$ changes from increasing to decreasing or from decreasing to increasing at these points.

