1. If $f(x)$ is increasing, then $f'(x)$ is	-
2. $f'(x)$ is negative if $f(x)$ is <u>decreasing</u> .	
3. $f''(x)$ is positive if $f(x)$ is concave up .	
4. $f''(x)$ is negative if $f'(x)$ is <u>decreasing</u> .	
5. If $f(x)$ is concave down, then $f'(x)$ is <u>decreasing</u> .	
6. If $f'(x)$ is increasing, then $f''(x)$ is	٠.
7. If $f'(x)$ is decreasing, then $f(x)$ is	-1
8. If $f'(x) > 0$ and $f''(x) < 0$, then $f(x)$ looks like	·
9. If $f(x)$ is an exponential decay curve, then $f'(x)$ is	and
10. If $f(x)$ has an inflection point, then $f(x)$ has a change in	oncavity
11. If $f(x)$ has a horizontal tangent, then $f'(x)$ has a	
12. If $f'(a) = 0$, then $f(x)$ has a <u>horizontal tangent</u> at	a
13. If $f'(x)$ has a change of sign and is always defined, then $f(x)$ or $f'(x)$.	has either a <u>rel. min</u>
14. If $f(x)$ has a corner at $x = a$, then $f'(a)$ is	·
15. If $f'(x) = 0$ for all values of x, then $f(x)$ is	el.
16. If $f''(x) = 0$ for all values of x, then $f(x)$ is	.
17. If $f'(a) = 2$ and $g(x) = f(x) - 5$, then $g'(a) = 2$	g'(x) = f'(x)
17. If $f'(a) = 2$ and $g(x) = f(x) - 3$, then $g'(a) = \frac{1}{2}$. 18. If $f(x)$ is concave down everywhere, then $-f(x)$ is concave .	ve up.
$f'' = -\alpha$	every where.