Write a formula for the area of:

Square of side s	Equilateral triangle of side s
Rectangle	Isosceles right triangle with leg s (means leg is on the base of solid figure)

Example 1: Emanuel the Duck just bought land with a perimeter set by $y=-\frac{1}{3} x^{2}+1, x \geq 0$ and $y \geq 0$
He plans to build a Biodome, which uses the area described above as a base. The Biodome will be built up so that cross-sections perpendicular to the x -axis will be squares. He wants to know if he will have enough volume in his biodome to have a party with all his friends. He needs 1 cubic mile of space. What is the volume and will he have enough space to entertain his friends?

Example 2: Find the volume of the solid whose base is bounded by the equations $y=-x^{2}+4$ and $y=-x-2$ and whose cross sections taken perpendicular to the x-axis are:
a. Squares
b. Equilateral Triangles
c. Rectangles of height 1
d. Isosceles Right triangles with 1 leg in the base
e. Semicircles

Example 3: Find the volume of the solid whose base is bounded by the equations $y=-x^{2}+3$ and $y=-1$ and whose cross sections taken perpendicular to the y-axis are:
a. Squares
b. Equilateral Triangles
c. Rectangles of height equal to twice the base
d. Isosceles Right triangles with the hypotenuse on the base.
e. Semicircles

\qquad

Find the volume of the solid whose base is bounded by the graphs of $y=x+1$ and $y=x^{2}-1$ with the indicated cross sections taken perpendicular to the x -axis.

1. Squares

2. Isosceles Triangles with a leg on the base.

3. Semicircles

4. Equilateral triangles

Find the volume of the solid whose base is bounded by the graphs of $y=x^{3}$ and $y=0$ and $x=1$ with the indicated cross sections taken perpendicular to the y-axis.
5. Squares

6. Rectangles of height 1

7. Semicircles

8. Equilateral triangles
