Work problem 1. Find the problem with the answer to problem 1. Number this problem #2. Continue numbering the problems in this fashion.

Answer: $\frac{1}{3}\sin(x^3) + C$

#1 – Evaluate: $\lim_{x \to 0} \frac{\sqrt{x+1} - 2}{x-3}$

Answer: $-2\sqrt{3}$

#____ - At what value(s) of x does $f(x) = x^4 - 18x^2 \text{ have a relative minimum?}$

Answer: $-\frac{2}{5}$

#____ - Find the derivative, $\frac{dy}{dx}$, of

 $x^2y - 5y = 12$ and evaluate it at the point (1, -3).

Answer: $12x^2 \sin^3(x^3)\cos(x^3)$

#____ - Evaluate: $\lim_{x \to \infty} \frac{5x^3 - 3}{2x^3 + 1}$

Answer: (1, 5)

#____ - A particle moves along a horizontal line so that its position is given by

 $s(t) = t^3 - 9t^2 + 15t + 4$, where $t \ge 0$. When is the particle speeding up?

Answer: $\frac{1}{3}$

#____ - Find y' given $y = x^2 \cos x$.

Answer: (1, 3) and (5, ∞)	Answer: 2
$=$ Evaluate: $\int \sin^3(2x)\cos(2x)dx$	# Write an equation of the line tangent to the graph of $y = x^3 + 3x^2 + 2$ at its point of inflection.
	Answer: -3 and 3
Answer: $-x^2 \sin x + 2x \cos x$ $f'(x)$ given $f(x) = \frac{x^2}{\tan x}$.	# Evaluate: $\lim_{h \to 0} \frac{\sin\left(\frac{\pi}{3} + h\right) - \sin\frac{\pi}{3}}{h}$
Answer: $\frac{5}{2}$	Answer: $\frac{1+\sqrt{2}}{4}$
f - If $f(x) = \cos(4x)$, find $f'\left(\frac{\pi}{12}\right)$.	# Evaluate: $\int x^2 \cos(x^3) dx$

Answer:	3	
	2	

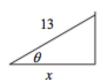
#____ - A spherical balloon is inflated with helium at the rate of $200\pi \frac{\text{ft}^3}{\text{min}}$. How fast is the balloon's radius increasing in ft/min at the instant the radius is 5 ft? (Volume of a sphere = $\frac{4}{3}\pi r^3$)

Answer:
$$\frac{2x \tan x - x^2 \sec^2 x}{\tan^2 x}$$

#____ - Find y' given $y = \sin^4(x^3)$.

Answer:
$$\frac{1}{2}$$

#____ - If x is increasing at a rate of 2 units per second, find the rate of change of θ at the instant when x = 12 units.



Answer: $\frac{1}{8}\sin^4(2x) + C$

#____ - Evaluate: $\int_0^4 \frac{2x}{\sqrt{9+x^2}} dx$

Answer: 4

#____ - Evaluate: $\int_{-\pi/8}^{\pi/12} \cos(2x) dx$

Answer: y-4=-3(x+1)

#_____ - A particle moves along a horizontal line so that its position is given by $s(t) = t^3 - 9t^2 + 15t + 4$, where $t \ge 0$. When is the particle moving to the left?