CALCULUS AB

REVIEW WORKSHEET ON DIFFERENTIAL EQUATIONS
Work these on notebook paper. Do not use your calculator.
Solve for y as a function of x.

1. $\frac{d y}{d x}=x^{2}(y-1)$
$y(0)=3$
2. $\frac{d y}{d x}=4 y^{2} \sec ^{2}(2 x)$
$y\left(\frac{\pi}{8}\right)=1$
3. $\frac{d y}{d x}=8 x y^{2}$
$y(-1)=-\frac{1}{3}$
4. $\frac{d y}{d x}=-\frac{2 x}{y}$
$y(1)=-1$
5. $x y \frac{d y}{d x}=\ln x$
$y(1)=-4$
6. $\frac{d y}{d x}=\frac{y-3}{x^{2}}$
$y(4)=0$
7. Consider the differential equation $\frac{d y}{d x}=\frac{x}{y}$.
a) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(-5)=-1$,
b) Use a tangent line approximation to estimate $f(-4.9)$.

Write a differential equation to represent the following:
8. The rate of change of a population y, with respect to time t, is proportional to t.
9. The rate of change of a population P, with respect to time t, is proportional to the cube of the population.
10. Water leaks out of a barrel at a rate proportional to the square root of the depth of the water at that time.
11. Oil leaks out of a tank at a rate inversely proportional to the amount of oil in the tank.
12. Which of the following is a slope field for the differential equation $\frac{d y}{d x}=x^{2}+y^{2}$?
(A)

(B)

(C)

(D)

13.

Oil is being pumped continuously from a certain oil well at a rate proportional to the amount of oil left in the well; that is,dy/dt=ky, where y is the amount of oil left in the well at any time t. Initially there were $1,000,000$ gallons of oil in the well, and 6 years later there were 500,000 gallons remaining. It will no longer be profitable to pump oil when there are fewer than 50,000 gallons remaining.

Write an equation for y, the amount of oil remaining in the well at any time t.

At what rate is the amount of oil in the well decreasing when there are 600,000 gallons of oil remaining?

