\qquad

1. Suppose $g(t)=1-t^{2}$.
a. Find the slope of the line secant to $g(t)$ from $t=-1$ to $t=3$.
b. Find the average rate of change of g on the interval [-1, -.5]
d. If $\mathrm{g}(\mathrm{t})$ gives the temperature $\left({ }^{\circ} \mathrm{C}\right)$ of a liquid at time t (sec), find the average rate of change of the temperature between $t=18$ seconds and $t=21$ seconds. Include units with your answer.
f. Find the instantaneous rate of change of g at $t=-1$.
c. Suppose g represents the position (in cm) of an object at time t seconds. Find the average velocity of the object on the time interval starting at $t=-1$ and lasting .1 seconds. Include units with your answer.
g. Find the slope of the line tangent to $g(t)$ at $t=0$. Then find the slope of the line normal(perpendicular) to the tangent line at $t=0$.
2. a)Use the limit definition to find the derivative of $f(x)=x^{2}-2 x$
b) Use the alternate form of the definition to find $f^{\prime}(2)$.
3. a) Use the limit definition to find the slope of the tangent line of $g(x)=\frac{1}{x+2}$.
b) Use the alternate form of the definition to find $g^{\prime}(2)$.
4. The graph of the function $k(x)$ is drawn below. Use it to answer the following questions.
a. On what interval(s) is $k(x)$ positive?
b. On what interval(s) is $k(x)<0$?
c. On what interval(s) is $k(x)$ increasing?
d. On what interval(s) is $k(x)$ decreasing?
e. On what interval(s) does the line tangent to $k(x)$ have a positive slope?
g. On what interval(s) does the line tangent to $k(x)$ have a negative slope?
h. For which value(s) of x does the line tangent to $k(x)$ have a slope of zero.

Each tick mark is 2 units.

