- 1. Which of the following definite integrals is equal to $\lim_{n \to \infty} \sum_{k=1}^n \frac{12k}{n} \cos\left(1 + \frac{4k}{n}\right) \frac{4}{n}$?
- C $\int_0^4 12\cos(1+x)dx$

- 2. Use the given areas to evaluate the following integrals.
- a) $\int_a^b f(\mathbf{x}) d\mathbf{x}$
- b) $\int_{b}^{c} f(x) dx$

- c) $\int_a^c f(x) dx$
- d) $\int_a^d f(x) dx$

- 3. f(x) is given to the right. Use area to evaluate the following integrals.
- a) $\int_0^2 f(x) dx$
- b) $\int_{0}^{5} f(x) dx$

- c) $\int_{\varepsilon}^{7} f(x) dx$
- d) $\int_0^9 f(x) dx$

- 4. The graph of g(x) consists of two straight lines and a semicircle. Use area to evaluate the following integrals.
- a) $\int_0^2 g(x) \, dx$
- b) $\int_2^6 g(x) dx$

- c) $\int_0^7 g(x) dx$
- d) $\int_{7}^{0} g(x) dx$

$$A(t) = \int_{-3}^{t} f(x) dx$$

- a) A(-3) =
- b) A(-1) =
- c) A(1) =
- d) A(5) =
- e) A(-5) =
- 2. Evaluate the following integrals by making a graph of the function over the relevant interval. {Use geometry.}
- a) $\int_{-3}^{5} 3dx$

c) $\int_{-2}^{4} (2-x) dx$

d) $\int_{0}^{4} |x-3| dx$

e) $\int_{-4}^{4} \sqrt{16 - x^2} dx$

f) $\int_0^3 (3-\sqrt{9-x^2})dx$

