\qquad
1.If $f(x)=x^{\frac{3}{2}}$, then $f^{\prime}(4)=$
(A) -6
(B) -3
(C) 3
(D) 6
(E) 8
2. If $x^{3}+3 x y+2 y^{3}=17$, then in terms of x and $y, \frac{d y}{d x}=$
(A) $-\frac{x^{2}+y}{x+2 y^{2}}$
(B) $-\frac{x^{2}+y}{x+y^{2}}$
(C) $-\frac{x^{2}+y}{x+2 y}$
(D) $-\frac{x^{2}+y}{2 y^{2}}$
(E) $\frac{-x^{2}}{1+2 y^{2}}$
3.An equation of the line tangent to the graph of $y=\frac{2 x+3}{3 x-2}$ at the point $(1,5)$ is
(A) $13 x-y=8$
(B) $13 x+y=18$
(C) $x-13 y=64$
(D) $x+13 y=66$
(E) $-2 x+3 y=13$
4. If $y=\tan x-\cot x$, then $\frac{d y}{d x}=$
(A) $\sec x \csc x$
(B) $\sec x-\csc x$
(C) $\sec x+\csc x$
(D) $\sec ^{2} x-\csc ^{2} x$
(E) $\sec ^{2} x+\csc ^{2} x$
5. If $f(x)=(x-1)^{2} \sin x$, then $f^{\prime}(0)=$
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
6. . The slope of the line normal to the graph of $y=2 \ln (\sec x)$ at $x=\frac{\pi}{4}$ is
(A) -2
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) 2
(E) nonexistent
7. If $f(x)=\left(x^{2}-2 x-1\right)^{\frac{2}{3}}$, then $f^{\prime}(0)$ is
(A) $\frac{4}{3}$
(B) 0
(C) $-\frac{2}{3}$
(D) $-\frac{4}{3}$
(E) $\quad-2$
8. $\frac{d}{d x}\left(2^{x}\right)=$
(A) 2^{x-1}
(B) $\left(2^{x-1}\right) x$
(C) $\left(2^{x}\right) \ln 2$
(D) $\quad\left(2^{x-1}\right) \ln 2$
(E) $\frac{2 x}{\ln 2}$
9.. If $f(x)=e^{3 \ln \left(x^{2}\right)}$, then $f^{\prime}(x)=$
(A) $e^{3 \ln \left(x^{2}\right)}$
(B) $\frac{3}{x^{2}} e^{3 \ln \left(x^{2}\right)}$
(C) $\quad 6(\ln x) e^{3 \ln \left(x^{2}\right)}$
(D) $5 x^{4}$
(E) $6 x^{5}$
10. If f is a differentiable function, then $f^{\prime}(a)$ is given by which of the following?
I. $\quad \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
II. $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
III. $\lim _{x \rightarrow a} \frac{f(x+h)-f(x)}{h}$
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III
11. If $f(x)=x \sqrt{2 x-3}$, then $f^{\prime}(x)=$
(A) $\frac{3 x-3}{\sqrt{2 x-3}}$
(B) $\frac{x}{\sqrt{2 x-3}}$
(C) $\frac{1}{\sqrt{2 x-3}}$
(D) $\frac{-x+3}{\sqrt{2 x-3}}$
(E) $\frac{5 x-6}{2 \sqrt{2 x-3}}$
12. If $f(x)=-x^{3}+x+\frac{1}{x}$, then $f^{\prime}(-1)=$
(A) 3
(B) 1
(C) -1
(D) -3
(E) -5
13. $\frac{d}{d x} \cos ^{2}\left(x^{3}\right)=$
(A) $6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(B) $6 x^{2} \cos \left(x^{3}\right)$
(C) $\sin ^{2}\left(x^{3}\right)$
(D) $-6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(E) $\quad-2 \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
14. An equation of the line tangent to the graph of $y=\cos (2 x)$ at $x=\frac{\pi}{4}$ is
(A) $y-1=-\left(x-\frac{\pi}{4}\right)$
(B) $y-1=-2\left(x-\frac{\pi}{4}\right)$
(C) $y=2\left(x-\frac{\pi}{4}\right)$
(D) $y=-\left(x-\frac{\pi}{4}\right)$
(E) $\quad y=-2\left(x-\frac{\pi}{4}\right)$
15. At what point on the graph of $y=\frac{1}{2} x^{2}$ is the tangent line parallel to the line $2 x-4 y=3$?
(A) $\left(\frac{1}{2},-\frac{1}{2}\right)$
(B) $\left(\frac{1}{2}, \frac{1}{8}\right)$
(C) $\left(1,-\frac{1}{4}\right)$
(D) $\left(1, \frac{1}{2}\right)$
(E) $(2,2)$
16. If $x^{2}+y^{2}=25$, what is the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(4,3)$?
(A) $-\frac{25}{27}$
(B) $-\frac{7}{27}$
(C) $\frac{7}{27}$
(D) $\frac{3}{4}$
(E) $\frac{25}{27}$
17. If $f(x)=\ln \left|x^{2}-1\right|$, then $f^{\prime}(x)=$
(A) $\left|\frac{2 x}{x^{2}-1}\right|$
(B) $\frac{2 x}{\left|x^{2}-1\right|}$
(C) $\frac{2|x|}{x^{2}-1}$
(D) $\frac{2 x}{x^{2}-1}$
(E) $\frac{1}{x^{2}-1}$
*18. If $f(x)=\frac{e^{2 x}}{2 x}$, then $f^{\prime}(x)=$
(A) 1
(B) $\frac{e^{2 x}(1-2 x)}{2 x^{2}}$
(C) $e^{2 x}$
(D) $\frac{e^{2 x}(2 x+1)}{x^{2}}$
(E) $\frac{e^{2 x}(2 x-1)}{2 x^{2}}$
*19. Let f be a function such that $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=5$. Which of the following must be true?
I. f is continuous at $x=2$.
II. f is differentiable at $x=2$.
III. The derivative of f is continuous at $x=2$.
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) II and III only
*20. Let f be the function given by $f(x)=2 e^{4 x^{2}}$. For what value of x is the slope of the line tangent to the graph of f at $(x, f(x))$ equal to 3 ?
(A) 0.168
(B) 0.276
(C) 0.318
(D) 0.342
(E) 0.551
*21. Let $f(x)=\sqrt{x}$. If the rate of change of f at $x=c$ is twice its rate of change at $x=1$, then $c=$
(A) $\frac{1}{4}$
(B) 1
(C) 4
(D) $\frac{1}{\sqrt{2}}$
(E) $\frac{1}{2 \sqrt{2}}$
22. If $x^{2}+x y=10$, then when $x=2, \frac{d y}{d x}=$
(A) $-\frac{7}{2}$
(B) -2
(C) $\frac{2}{7}$
(D) $\frac{3}{2}$
(E) $\frac{7}{2}$
23. What is the instantaneous rate of change at $x=2$ of the function f given by $f(x)=\frac{x^{2}-2}{x-1}$?
(A) -2
(B) $\frac{1}{6}$
(C) $\frac{1}{2}$
(D) 2
(E) 6

24.The graph of the function f shown in the figure above has a vertical tangent at the point $(2,0)$ and horizontal tangents at the points $(1,-1)$ and $(3,1)$. For what values of $x,-2<x<4$, is f not differentiable?
(A) 0 only
(B) 0 and 2 only
(C) 1 and 3 only
(D) 0, 1, and 3 only
(E) 0, 1, 2, and 3
25. If $f(x)=\sin \left(e^{-x}\right)$, then $f^{\prime}(x)=$
(A) $-\cos \left(e^{-x}\right)$
(B) $\cos \left(e^{-x}\right)+e^{-x}$
(C) $\quad \cos \left(e^{-x}\right)-e^{-x}$
(D) $e^{-x} \cos \left(e^{-x}\right)$
(E) $-e^{-x} \cos \left(e^{-x}\right)$
26. An equation of the line tangent to the graph of $y=x+\cos x$ at the point $(0,1)$ is
(A) $y=2 x+1$
(B) $y=x+1$
(C) $y=x$
(D) $y=x-1$
(E) $y=0$
27. The graph of f is shown in the figure below. Which of the following could be the graph of the derivative of f ?
(A)

(C)

(E)

(D)

34. If $f(x)=\tan (2 x)$, then $f^{\prime}\left(\frac{\pi}{6}\right)=$
(A) $\sqrt{3}$
(B) $2 \sqrt{3}$
(C) 4
(D) $4 \sqrt{3}$
(E) 8
*35. Let f be the function given by $f(x)=3 e^{2 x}$ and let g be the function given by $g(x)=6 x^{3}$. At what value of x do the graphs of f and g have parallel tangent lines?
(A) -0.701
(B) -0.567
(C) -0.391
(D) -0.302
(E) -0.258
*36. Which of the following is an equation of the line tangent to the graph of $f(x)=x^{4}+2 x^{2}$ at the point where $f^{\prime}(x)=1$?
(A) $y=8 x-5$
(B) $y=x+7$
(C) $y=x+0.763$
(D) $y=x-0.122$
(E) $y=x-2.146$

