\qquad
Note-Any problem with a * is Calculator Active

1. $\lim _{n \rightarrow \infty} \frac{3 n^{3}-5 n}{n^{3}-2 n^{2}+1}$ is
(A) -5
(B) -2
(C) 1
(D) 3
(E) nonexistent
2.If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}-4}{x+2}$ when $x \neq-2$, then $f(-2)=$
(A) -4
(B) -2
(C) -1
(D) 0
(E) 2
2. $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{2 \sin ^{2} \theta}$ is
(A) 0
(B) $\frac{1}{8}$
(C) $\frac{1}{4}$
(D) 1
(E) nonexistent
4.If f is a differentiable function, then $f^{\prime}(a)$ is given by which of the following?
I. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
II. $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
III. $\lim _{x \rightarrow a} \frac{f(x+h)-f(x)}{h}$
(A) I only
(B)
II only
(C) I and II only
(D) I and III only
(E) I, II, and III
3.

The graph of the function f is shown in the figure above. Which of the following statements about f is true?
(A) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow b} f(x)$
(B) $\lim _{x \rightarrow a} f(x)=2$
(C) $\lim _{x \rightarrow b} f(x)=2$
(D) $\lim _{x \rightarrow b} f(x)=1$
(E) $\quad \lim _{x \rightarrow a} f(x)$ does not exist.
6. Let f be the function defined by the following. For what values of x is f NOT continuous?
$f(x)= \begin{cases}\sin x, & x<0 \\ x^{2}, & 0 \leq x<1 \\ 2-x, & 1 \leq x<2 \\ x-3, & x \geq 2\end{cases}$
(A) 0 only
(B) 1 only
(C) 2 only
(D) 0 and 2 only
(E) 0,1 , and 2
7. If $f(x)=\left\{\begin{aligned} \ln x & \text { for } 0<x \leq 2 \\ x^{2} \ln 2 & \text { for } 2<x \leq 4,\end{aligned}\right.$ then $\lim _{x \rightarrow 2} f(x)$ is
(A) $\ln 2$
(B) $\ln 8$
(C) $\quad \ln 16$
(D) 4
(E) nonexistent
8. $\lim _{x \rightarrow 0} \frac{\tan \pi x}{x}$
(A) $\frac{1}{\pi}$
(B) 0
(C) 1
D) π
(E) ∞

x	0	1	2
$f(x)$	1	k	2

9.The function f is continuous on the closed interval $[0,2]$ and has values that are given in the table above. The equation $f(x)=\frac{1}{2}$ must have at least two solutions in the interval $[0,2]$ if $k=$
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2
(E) 3
*10. If $a \neq 0$, then $\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x^{4}-a^{4}}$ is
(A) $\frac{1}{a^{2}}$
(B) $\frac{1}{2 a^{2}}$
(C) $\frac{1}{6 a^{2}}$
(D) 0
(E) nonexistent
11. Find $g(x)$, that will make the function continuous at $x=1$.
$f(x)= \begin{cases}2 x^{2}+3 & \text { if } x \geq 1 \\ g(x) & \text { if } x<1\end{cases}$
a. $\cos (x+4)$
b. x
c. $6-x$
d. $2 x^{2}-3$
e. $x^{2}+2$
12. $\lim _{h \rightarrow 0} \frac{(1+h)^{6}-1}{h}$
(A) 0
(B) 1
(C) 6
(D) ∞
(E) Does note exis
13. $\lim _{h \rightarrow 0} \frac{\sin (3 x)}{\sin (4 x)}$
(A) 1
(B) $\frac{4}{3}$
(C) $\frac{3}{4}$
(D) 0
(E) Does not exist
14. $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{50}}$
(A) 0
(B) 1
(C) $\frac{1}{50!}$
(D) ∞
(E) none of these
15. $\lim _{x \rightarrow-\infty} \frac{e^{x}}{x^{50}}$
(A) 0
(B) 1
(C) $\frac{1}{50!}$
(D) ∞
(E) none of these
16. $\lim _{h \rightarrow 0} \frac{\ln (e+h)-1}{h}$ is
(A) $f^{\prime}(e)$, where $f(x)=\ln x$
(B) $f^{\prime}(e)$, where $f(x)=\frac{\ln x}{x}$
(C) $f^{\prime}(1)$, where $f(x)=\ln x$
(D) $f^{\prime}(1)$, where $f(x)=\ln (x+e)$
(E) $f^{\prime}(0)$, where $f(x)=\ln x$

FRQ:

Question 6

Let f be a function defined by $f(x)= \begin{cases}1-2 \sin x & \text { for } x \leq 0 \\ e^{-4 x} & \text { for } x>0 .\end{cases}$
(a) Show that f is continuous at $x=0$.
(b) For $x \neq 0$, express $f^{\prime}(x)$ as a piecewise-defined function. Find the value of x for which $f^{\prime}(x)=-3$.
(c) Find the average value of f on the interval $[-1,1]$.

