\qquad
2 daily grades - Cannot be dropped

1. A function $f(x)$ is continuous on on $[-2,3]$ and has the properties for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ given below.

\mathbf{x}	$\mathbf{- 2}$	$\mathbf{- 2}<\mathbf{x}<\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}<\mathbf{x}<\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}<\mathbf{x}<\mathbf{3}$	$\mathbf{3}$
$\boldsymbol{f}(\boldsymbol{x})$	0	Positive	2	Positive	3	Positive	1
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	DNE	Positive	0	Positive	DNE	Negative	DNE
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$	DNE	Negative	0	Positive	DNE	Negative	DNE

a) Find the x-values for any relative extrema. Identify if they are maximums or minimums and justify your conclusions.
b) Where is $f(x)$ concave up? Justify your answer.
c) Find any points of inflection. Justify your answer.
d) Sketch a graph of $f(x)$ on $[-2,3]$ that satisfies the given information.
2. A function $f(x)$ is continuous on $[-3,4]$ and the graph of $f^{\prime}(x)$ is given below.

$$
f(-3)=2, f(-1)=0, \text { and } f(4)=0
$$

a) What are the critical numbers for $f(x)$? Justify your conclusion.
b) Where does $f(x)$ have relative extrema? Is each extrema a relative maximum or a relative minimum? Justify your conclusion.
c) On what interval(s) is $f(x)$ concave down? Justify your conclusion.
d) Sketch a graph of $f(x)$ on $[-3,4]$ that satisfies the given information.
3. A function $f(x)$ is continuous on on $[-2,3]$ and has the properties for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ given below.

\mathbf{x}	$\mathbf{- 2}$	$\mathbf{- 2}<\mathbf{x}<\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}<\mathbf{x}<\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}<\mathbf{x}<\mathbf{3}$	$\mathbf{3}$
$\boldsymbol{f}(\boldsymbol{x})$	0	Negative	-2	Negative	0	Positive	3
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	DNE	Negative	DNE	Positive	0	Positive	DNE
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$	DNE	Negative	DNE	Negative	0	Positive	DNE

a) Find the x-values for any relative extrema. Identify if they are maximums or minimums and justify your conclusions.
b) Where is $f(x)$ increasing? Justify your answer.
c) Find any points of inflection. Justify your answer.
d) Sketch a graph of $f(x)$ on $[-2,3]$ that satisfies the given information.
4. A function $f(x)$ is continuous on on $[-4,4]$ and the graph of $f^{\prime}(x)$ is given below.
$f^{\prime}(x)$ has a vertical tangent at $\mathrm{x}=-2$ and horizontal tangents at $\mathrm{x}=0$ and $\mathrm{x}=3$. $x=-4,0$, and 4 are all roots of $f(x)$.

a) Where is $f(x)$ increasing? Justify your conclusion.
b) Where does $f(x)$ have relative extrema? Is each extrema a relative maximum or a relative minimum? Justify your conclusion.
c) Where is $f(x)$ concave down? Justify your conclusion.
d) Sketch a graph of $f(x)$ on $[-4,4]$ that satisfies the given information assuming that $f(0)=0$.

Multiple Choice Practice -

The answers are highlighted, you must justify the correct answer with proper AP justification.

1. If $f(x)=\sin \left(\frac{x}{2}\right)$, then there exists a number c in the interval $\frac{\pi}{2}<x<\frac{3 \pi}{2}$ that satisfies the conclusion of the Mean Value Theorem. Which of the following could be c ?
A) $\frac{2 \pi}{3}$
B) $\frac{3 \pi}{4}$
C) $\frac{5 \pi}{6}$
D) π
E) $\frac{3 \pi}{2}$
2. At what value of x does the graph of $y=\frac{1}{x^{2}}-\frac{1}{x^{3}}$ have a point of inflection?
A) 0
B) 1
C) 2
D) $3 \quad$ E) At no value of x
3. The derivative of f is $x^{4}(x-2)(x+3)$. At how many points will the graph of f have a relative maximum?
A) none
B) one
C) two
D) three
E) four
4. How many critical points does the function $f(x)=(x+2)^{5}(x-3)^{4}$ have?
A) one
B) two
C) three
D) five
E) nine
5. Let f be the function with derivative given by $f^{\prime}(x)=x^{2}-\frac{5}{x}$, on which of the following intervals is f increasing.
A. $(-\infty, \infty)$
B. $(-\infty, 0) \cup(\sqrt[3]{5}, \infty)$
C. $(\sqrt[3]{5}, \infty)$ only
D. $(0, \sqrt[3]{5})$
6. Let f be the function defined by $f(x)=\left\{\begin{array}{l}x^{3}, x \leq 0 \\ x, x>0\end{array}\right.$. Which of the following statements about f is true?
A) f is an odd function
B) f is discontinuous at $x=0$
C) f has a relative maximum
D) $f^{\prime}(0)=0$
E) $f^{\prime}(x)>0$ for $x \neq 0$

Calculator questions

7.** If the derivative of f is given by $f^{\prime}(x)=e^{x}-3 x^{2}$ at which of the following values of x does f have a realtive maximum value?
A. -0.46
B. 0.20
C. 0.91
D. 0.95
E. 3.73
8.** The function f is given by $f(x)=x^{3}+12 x-24$ is
A) increasing for $x<-2$, decreasing for $-2<x<2$, increasing for $x>2$.
B) decreasing for $x<0$, increasing for $x>0$.
C) increasing for all x
D) decreasing for all x
E) decreasing for all $x<-2$, increasing for $-2<x<2$, decreasing for $x>2$.
9.** The function f has a first derivative given by $f^{\prime}(x)=\frac{x}{x^{2}-x-1}$. What is the x coordinate of the inflection point of the graph of f ?
A. -0.618
B. 1.618
C. 0
D. -4.866
E. The graph of f has no inflection point

