AP Differential Free Response Packet

name Key

1) A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the

figure. Let h be the depth of the coffee in the pot, measured in inches, where h is a function of time t, measured in seconds. The volume V of coffee in the pot is changing at the rate of $-5\pi\sqrt{h}$ cubic inches per second. (The volume V of a cylinder with radius r and height h is $V = \pi r^2 h$.)

(a) Show that
$$\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$$
.

$$\frac{dV}{dt} = \pi r^{2} \cdot \frac{dh}{dt} + h \cdot 2\pi r \frac{dr}{dt}$$

$$-5\pi \ln = \pi (25) \frac{dh}{dt} + h \cdot 2\pi s \cdot 0$$

$$\frac{dh}{dt} = -\frac{5\pi \ln}{25\pi} = -\frac{\pi L}{5}$$

(b) Given that h = 17 at time t = 0, solve the differential equation $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$ for h as a function of t.

$$\int \frac{dh}{\sqrt{h}} = \int -\frac{1}{5} dt$$

$$\int A^{-1/2} dh = -\frac{1}{5}t + C$$

$$2 \int A = -\frac{1}{5}t + C$$

$$2\sqrt{17} = -\frac{1}{5}(0) + t$$

$$t = 2\sqrt{17}$$

$$2(A = -\frac{1}{5}t + 2\sqrt{17})$$

$$\sqrt{A} = -\frac{1}{10}t + \sqrt{17}$$

$$A = \left(-\frac{1}{10}t + \sqrt{17}\right)^2$$

(c) At what time t is the coffeepot empty?

The coffee pot is empty when h=0 $0 = \left(\frac{1}{10}t + \sqrt{17}\right)^{2}$ $-\frac{1}{10}t + \sqrt{17} = 0$ $\frac{1}{10}t = \sqrt{17}$ $t = 10\sqrt{17}$ seconds

2008 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{y-1}{x^2}$, where $x \neq 0$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(Note: Use the axes provided in the exam booklet.)

(X14)	$\frac{dy}{dx}$
(1,0)	-1 = -1
(2,0)	1-4
(1,2)	1
(2,2)	4

- (b) Find the particular solution y = f(x) to the differential equation with the initial condition f(2) = 0.
- (c) For the particular solution y = f(x) described in part (b), find $\lim_{x \to \infty} f(x)$.

2007 AP° CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y 1$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(Note: Use the axes provided in the exam booklet.)

dy		
	(KIY)	dx
	(0,0)	-1
	(1,0)	\$+0-1=-1/2
	(-1,0)	-12+0-1= -3/2
	(0,1)	0+1-1=0
	(1.1)	生+1-1=12
	(-1,1)	$\frac{2}{-\frac{1}{2}+1-1} = \frac{-1}{2}$
	(1,2)	12+2-1-12

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up.
- (c) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer.

2011 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

- 5. At the beginning of 2010, a landfill contained 1400 tons of solid waste. The increasing function W models the total amount of solid waste stored at the landfill. Planners estimate that W will satisfy the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ for the next 20 years. W is measured in tons, and t is measured in years from the start of 2010.
 - (a) Use the line tangent to the graph of W at t = 0 to approximate the amount of solid waste that the landfill contains at the end of the first 3 months of 2010 (time $t = \frac{1}{4}$).
 - (b) Find $\frac{d^2W}{dt^2}$ in terms of W. Use $\frac{d^2W}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the amount of solid waste that the landfill contains at time $t = \frac{1}{4}$.
 - (c) Find the particular solution W = W(t) to the differential equation $\frac{dW}{dt} = \frac{1}{25}(W 300)$ with initial condition W(0) = 1400.

-b)
$$\frac{d^2y}{dx^2} = \frac{1}{2} + \frac{dy}{dx} = \frac{1}{2} + \frac{1}{2}x + y - 1 = \left(\frac{1}{2}x + y - \frac{1}{2}\right)$$

 $y > -\frac{1}{2}x + \frac{1}{2}$: (all points above the line $y = -\frac{1}{2}x + \frac{1}{2}$ will be concave up.

$$\frac{d^2y}{dx^2}\Big|_{(0,1)} = \frac{1}{2}(6)+1-\frac{1}{2}=\frac{1}{2}$$
 Since $\frac{d^2y}{dx^2} > 0$, the function is coneave up at $(0,1)$

: ((0,1) is a relative minimum for y=f(x).)

b)
$$\int \frac{dy}{y-1} = \int \frac{dx}{x^2}$$
 (2.0)

$$C = \frac{1}{2}$$

$$e^{-\frac{1}{x} + \frac{1}{2}} = |y - 1| \Rightarrow y - 1 = \pm e^{-\frac{1}{x} + \frac{1}{2}}$$

$$y = -e^{-\frac{1}{x} + \frac{1}{2}} + 1$$

$$y = 1 \pm e^{-\frac{1}{x} + \frac{1}{2}}$$

⇒
$$y-1 = \pm e^{x+2}$$

 $y = 1 \pm e^{-\frac{1}{x} + \frac{1}{2}}$

$$\lim_{x \to \infty} \left(\frac{-1}{x} \right) = 0 \qquad \therefore \qquad \lim_{x \to \infty} \left(1 - e^{-\frac{1}{x} + \frac{1}{2}} \right) = \underbrace{\left\{ 1 - e^{\frac{1}{12}} \right\}}_{x \to \infty}$$

2011 #5
$$\frac{dW}{dt} = \frac{1}{25} (W-300) \quad \text{for} \quad 04 + 420$$

$$W(0) = 1400$$

$$t = 0 \rightarrow 2010$$

b)
$$\frac{d^2w}{dt^2} = \frac{1}{25} \left(\frac{dw}{dt} \right) = \frac{1}{25} \left(\frac{1}{25} (w-300) \right) = \frac{w-300}{625}$$

$$\frac{d^2w}{dt^2}\Big|_{(0,1400)} = \frac{1400-300}{625} > 0 \quad \text{on } 0 \le t \le \frac{1}{4}$$

: With is concave up on 04t = 4 making part a an underestimate

 $ln|w-300| = \frac{1}{25}t+C$ $ln|1100| = \frac{1}{25}(0)+C$

$$C = \ln |1100|$$

$$\ln |w-300| = \frac{1}{25}t + \ln |1100|$$

$$W = 1100e + 300$$