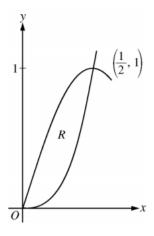
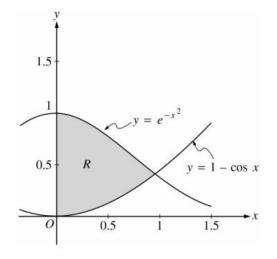
You may not use a calculator on problem #1. The rest of the problems are calculator active.



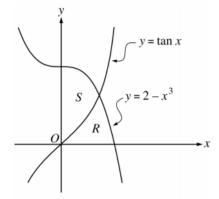
- Let R be the region in the first quadrant enclosed by the graphs of $f(x) = 8x^3$ and $g(x) = \sin(\pi x)$, as shown in the figure above.
 - (a) Write an equation for the line tangent to the graph of f at $x = \frac{1}{2}$.
 - (b) Find the area of R.
 - (c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line y = 1.
- 2. Let f and g be the functions given by $f(x) = e^x$ and $g(x) = \ln x$.
 - (a) Find the area of the region enclosed by the graphs of f and g between $x = \frac{1}{2}$ and x = 1.
 - (b) Find the volume of the solid generated when the region enclosed by the graphs of f and g between $x = \frac{1}{2}$ and x = 1 is revolved about the line y = 4.
 - (c) Let h be the function given by h(x) = f(x) g(x). Find the absolute minimum value of h(x) on the closed interval $\frac{1}{2} \le x \le 1$, and find the absolute maximum value of h(x) on the closed interval $\frac{1}{2} \le x \le 1$. Show the analysis that leads to your answers.
 - Let R be the region bounded by the x-axis, the graph of $y = \sqrt{x}$, and the line x = 4.
 - (a) Find the area of the region R.

3.

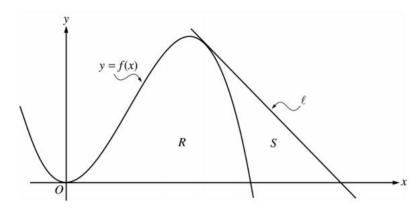
- (b) Find the value of h such that the vertical line x = h divides the region R into two regions of equal area.
- (c) Find the volume of the solid generated when R is revolved about the x-axis.
- (d) The vertical line x = k divides the region R into two regions such that when these two regions are revolved about the x-axis, they generate solids with equal volumes. Find the value of k.



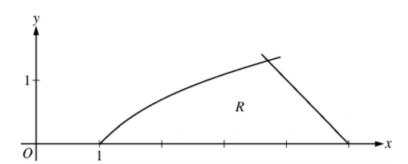
- Let R be the shaded region in the first quadrant enclosed by the graphs of $y = e^{-x^2}$, $y = 1 \cos x$, and the y-axis, as shown in the figure above.
 - (a) Find the area of the region R.
 - (b) Find the volume of the solid generated when the region R is revolved about the x-axis.
 - (c) The region *R* is the base of a solid. For this solid, each cross section perpendicular to the *x*-axis is a square. Find the volume of this solid.



- Let R and S be the regions in the first quadrant shown in the figure above. The region R is bounded by the x-axis and the graphs of $y = 2 x^3$ and $y = \tan x$. The region S is bounded by the y-axis and the graphs of $y = 2 x^3$ and $y = \tan x$.
 - (a) Find the area of R.
 - (b) Find the area of S.
 - (c) Find the volume of the solid generated when S is revolved about the x-axis.



- Let f be the function given by $f(x) = 4x^2 x^3$, and let ℓ be the line y = 18 3x, where ℓ is tangent to the graph of f. Let R be the region bounded by the graph of f and the x-axis, and let S be the region bounded by the graph of f, the line ℓ , and the x-axis, as shown above.
 - (a) Show that ℓ is tangent to the graph of y = f(x) at the point x = 3.
 - (b) Find the area of S.
 - (c) Find the volume of the solid generated when R is revolved about the x-axis.



- Let R be the region in the first quadrant bounded by the x-axis and the graphs of $y = \ln x$ and y = 5 x, as shown in the figure above.
 - (a) Find the area of R.
 - (b) Region *R* is the base of a solid. For the solid, each cross section perpendicular to the *x*-axis is a square. Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid.
 - (c) The horizontal line y = k divides R into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k.