Limits
Notation for:
Limit from the left of $f(x)$ as
$x \rightarrow a$

Limit from the right of $f(x)$ as $x \rightarrow a$
$\lim _{x \rightarrow a} f(x)$ exists if :
$=$
Theorems:
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=$
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=$
Steps:
1.
2.
3.

Definition of Continuity:

A function is continuous at the point $x=a$ if and only if:
1.
2.
3.

Intermediate Value Theorem

Extreme Value Theorem

Rolle's Theorem

Derivatives
Definition of Derivative
$\frac{d}{d x}(f(x))=$
Alternate Form of Def. of Derivative $\frac{d}{d x}(f(x))$ at $x=a$

Equation of a tangent line at $\mathbf{x}=\mathbf{a}$

Chain Rule

$f(g(x))$	

Product Rule

$f \cdot g$	

Quotient Rule

$\frac{f}{g}$	

Curve Sketching and Analysis
Critical Points:
Increasing:
Decreasing:
Relative Min:

Relative Max:

Absolute Extrema:

Concave Up:
Concave Down:
Point of Inflection:

More Derivatives
Where u is a function of x and a is a constant

function	derivative
x^{n}	
$\sin u$	
$\cos u$	
$\tan u$	
$\csc u$	
$\sec u$	
$\cot u$	
$\arcsin u$	

$\arccos u$

$\arctan \mathrm{u}$	

$\operatorname{arccsc} u$

$\operatorname{arcsec} u$	

$\operatorname{arccot} u$

e^{u}	
$\ln \mathrm{u}$	
a^{u}	
$\log _{a} u$	

Derivative of an Inverse
(a, b) on $f(x)$
$g(x)=f^{-1}(x)$
$g^{\prime}(b)=$
The Mean Value Theorem (derivatives)

