Name:

Stuff You Must Know Cold - Cal AB

Limits Derivatives Notation for: Definition of Derivative Limit from the left of f(x) as $\frac{d}{dx}(f(x)) =$ $x \rightarrow a$ Limit from the right of f(x) as $\frac{d}{dx}(f(x)) at x = a$ $x \rightarrow a$ $\lim_{x\to a} f(x) \text{ exists if }:$ **Chain Rule** = f(q(x))Theorems: $\lim_{x \to 0} \frac{\sin x}{x} =$ **Product Rule** f g $\lim_{x \to 0} \frac{1 - \cos x}{x} =$ **Quotient Rule** Steps: 1. 2. f3. g **Definition of Continuity:** A function is continuous at the point x=a if and only if: Critical Points: 1. Increasing: 2. Decreasing: 3. Relative Min: **Intermediate Value Theorem** Relative Max: Absolute Extrema: **Extreme Value Theorem** Concave Up: Concave Down: Point of Inflection: **Rolle's Theorem**

More Derivatives function \mathbf{x}^{n} sin u Alternate Form of Def. of Derivative cos u tan u csc u sec u Equation of a tangent line at x=a cot u arcsin u arccos u arctan u arccsc u arcsec u arccot u **Curve Sketching and Analysis** $e^{\overline{u}}$ ln u a^{u} $\log_a u$ g'(b) =

Where u is a function of x and a is a constant derivative **Derivative of an Inverse** (a,b) on f(x)

 $g(x) = f^{-1}(x)$

The Mean Value Theorem (derivatives)

Name:

<u>Stuff You Must Know Cold – Cal AB</u>

The Fundamental Theorem of	<u>Distance, Velocity, and Acceleration</u>	Trig Study Sheet
Calculus $\int_{a}^{b} f(x) dx$	velocity = acceleration =	Signs: All Students Take Calculus sin All functions
$\int_{a} f(x) dx =$ F'(x) = f(x)	speed =	Values: csc are positive tan cos
Corollary to FTC	Speed is increasing when	<u>30°</u> 45° 60°
$\frac{d}{dx}\int_{h(x)}^{g(x)}f(t)dt =$	position=	sin θ
	Total distance	
Mean Value Theorem for Integrals (Average Value)	average velocity =	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	l'Hôpital's Rule :	$\tan = \sin/\cos \qquad (-1,0) \qquad (1,0)$
$\frac{\text{Other integration rules:}}{\int x^n dx} =$	Volumes of Known Cross Sections:	<u>Trig Graphs:</u> (0-1) y = sin x
$\int \tan u du =$ $\int \sec u du =$	(Perpendicular to x-axis)	y = cos x
$\int \csc u du =$ $\int \cot u du =$ $\int a^{u} du =$	(Perpendicular to y-axis) Squares: Rectangles: Equilateral Triangles:	y = tan x
Area between two curves:	Isosceles Right Triangles: Semicircles:	Pythagorean Identities:
Solids of Revolution Disk Method	Riemann Sums: 3 types of Riemann Sums left side midpoint side right side	<u>Reciprocal Identities:</u>
Washer Method	$\begin{pmatrix} f(c_1) + f(c_2) \\ 2 \end{pmatrix} (ax)$	• Double Angles:
	Limit definition of an Integral: $Area = \int_{a}^{b} f(x) dx =$	